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Abstract :- Restricted Boltzmann machines (RBM) are 
probabilistic graphical models which are represented as 
stochastic neural networks. Increase in computational 
capacity and development of faster learning algorithms, led 
RBMs to become more useful for many machine learning 
problems. RBMs are the building blocks of many deep multi-
layer architectures like Deep Belief networks (DBN) and Deep 
Boltzmann Machines (DBM). Many machine learning 
algorithms like neural networks with a few hidden layers, 
Support Vector Machines (SVM), k-Nearest Neighbors (k-
NN), etc., are shallow architectures but DBNs and DBMs are 
deep architectures with many hidden layers. In this paper we 
have compared two different inference models with four 
different architectures. Experimental comparisons 
demonstrate that both the inference vary according to the 
number of hidden layers and number of neurons in it. 
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I. INTRODUCTION 
Many existing machine learning algorithms 

exhibit “shallow” architectures. For example, neural 
networks with a few hidden layers, kernel regression, k-
Nearest Neighbors, Support Vector Machines, and many 
others have shallow architectures. But some functions 
cannot be efficiently represented by architectures that are 
too shallow because they are incapable of efficiently 
extracting some types of complex structure from rich 
sensory input. Moreover, training these systems requires 
large amount of labeled data. Thus it would be worthwhile 
to explore learning algorithms for deep architectures, which 
might be able to represent some functions otherwise not 
efficiently representable. One characteristic of deep 
architecture is that it can make efficient use of unlabeled 
data. But training deep generative models is a difficult task, 
because performing inference and evaluating marginal 
probabilities under such models is complicated. The 
revolution to effective training strategies for deep 
architectures came in 2006 with the introduction of 
algorithms for training Deep Belief Networks (DBN) [8] 
and stacked auto-encoders [7], which are all based on a 
similar approach of greedy layer-wise unsupervised pre-
training followed by supervised fine-tuning. 

Some of the areas where deep learning 
architectures have been successfully applied are 
classification tasks [6], regression [9], dimensionality 
reduction [7], information retrieval and natural language 
processing [10]. 

In a previous paper [16], the working of restricted 
Boltzmann Machine has been briefly explained. Different 
techniques have been proposed to improve generalization 
ability. A dropout training is a technique to improve the 
generalization ability by dropping several hidden nodes 
during the training process [12]. But it is computationally 
intensive. So, fast algorithm of the dropout training has 
been      reported[13]. The main component of the DNN 
training is a restricted Boltzmann Machine (RBM). It is 
initialized by stacking RBM. 

II. RESTRICTED BOLTZMANN MACHINE (RBM)
Boltzmann Machines (BM) is the form of log-

linear Markov Random Field (MRF), where the energy 
function is linear in its free parameters [4].  We can 
introduce hidden nodes to make them powerful enough to 
represent complicated distribution. By introducing more 
hidden variables, we can increase the modeling capacity of 
the Boltzmann Machine. Restricted Boltzmann Machines 
are BMs without visible-visible and hidden-hidden 
connections [4]; hence the name ‘restricted’. A graphical 
representation of an RBM is shown below. 

Fig. 1  A graphical representation of an RBM 

The Energy function E (v, h) is given by: 

  E(v,h)= – b’v – c’h – h’Wv   (1) 

where W represents the weights connecting hidden and visible 
units and b, c are the offsets of the visible and hidden layers 
respectively. 

In context to free energy, eq (1) is given by: 

  F (v) =  – b’v – ∑i  log ∑hi e hi 
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RBMs are conditionally independent given one another 
so they can be written as: 
                       p (h | v) = ∏ ሻݒ|		݄	ሺ  

                        p (v | h) = ∏ ห݄ሻ	ݒ	൫  

RBMs with binary unit where vj and hi Є {0, 1} 
can be obtained by: 

              p(hi=1|v)=sigm(ci+Wiv)                                 (2) 

             p(vj=1|h) = sigm(bj+W’jh)                                    (3) 

Now, the free energy is given by: 
       F(v) = – b’v– ∑ilog(1+e(c

i
+W

i
v))                        (4) 

 
Combining (1) and (4), we get log-likelihood 

gradients of RBM as follows: 

െ
డሺ௩ሻ

డௐೕ
	 = Ev[ሺ	݄		|ݒሻ	.	vj ]– vj

(i). sigm(Wi . v
(i) +cj)  

െ
డሺ௩ሻ

డ
	 = Ev[ሺ	݄		|ݒሻ ] –  sigm ( Wi  . v

(i) ) 

െ
డሺ௩ሻ

డ
	= Ev[൫	ݒ		ห݄ሻ]–vj

(i)                                                              (5) 

Sampling of RBM can be done by running a 
Markov chain to convergence, using Gibbs sampling as the 
transition operator. 

 
A. Gibbs Sampling 

Gibbs sampling of N random variables S = (S1 ,…, 
SN) is done through a sequence of N sampling sub-steps of 
the form Si ~ p(Si| S-i) where S-I contains the N-1  other 
variables in S excluding Si [4]. 

In RBMs the set of visible and hidden units are 
conditionally independent, so we can perform block Gibbs 
sampling by simultaneously sampling visible units, given 
fixed values of hidden units. Similarly hidden units can 
also be sampled, given visible units. One step of Markov 
chain is given by: 

               h(n+1)  =  sigm ( W’v(n) +c) 

               v(n+1)  =  sigm ( W h
(n+1) +b) 

where hn is the set of all hidden units at the n-th 
step of the Markov chain  

 

 

                                         

   

 

         

Fig. 2 Graphical representation of Gibbs Sampling 

The accurate samples of p(v, h) is given by 
samples(v(t) , h(t)) when t → ∞ 

Here updation of each parameter in the learning 
process would require running one such chain to 
convergence, which is computationally intensive. This is 
fundamentally why the Boltzmann machine was replaced in 
the late 80’s by the back-propagation algorithm for multi-
layer neural networks as the dominant learning approach. 
However, recent works [11], [1], [2] have shown that short 
chains can sometimes be used successfully, and this is the 
principle of Contrastive Divergence (CD), discussed below 
to train RBMs. 

B. Contrastive Divergence 
CD uses two tricks to speed up the sampling process 

[4], [11]: 
• CD does not wait for the chain to converge. 

Samples are obtained after only k-steps of Gibbs 
sampling.  

• It initializes the Markov chain with a training 
example so that the chain will already be close to 
p having converged to its final distribution p. 

It has been shown that estimates obtained after running 
the chain for just a few steps can be sufficient for model 
training [11]. The single-step contrastive divergence 
algorithm (CD-1) works like this: 
   Positive phase  

• An input sample v is clamped to the input layer. 
• v is propagated to the hidden layer 
• Hidden layer activation result is h 

Negative phase 
•  Propagate h back to the visible layer with result v’  
• Propagate the new v’ back to the hidden layer with 

activations result h’ Weight update 
             w(t +1) = w(t) + a(vhT + v’h’T )           (6) 

where ‘a’ is the learning rate and v, v’, h, h’, and w are 
vectors. 
 

III. MODELS OF DEEP ARCHITECTURE 
A. Introduction 

Learning algorithms that learn to represent 
functions with many levels of composition are said to have 
a deep architecture. Deep architectures are composed of 
multiple levels of non-linear operations, such as in neural 
nets with many hidden layers. RBMs are the building 
blocks of deep architectures such as DBN and DBM. Some 
of the deep learning models are: 
B. Deep Belief Network (DBN) 

The first model is the Deep Belief Net (DBN) by 
Hinton [1], obtained by training and stacking several layers 
of Restricted Boltzmann Machines (RBM) in a greedy 
manner. Once this stack of RBMs is trained, it can be used 
to initialize a multi-layer neural network for classification 
[5]. 

A DBN is a multi-layer generative model with 
layer variables h0 (the input or visible layer), h1, h2, etc. The 
top two layers have a joint distribution which is an RBM, 
where P(hk|hk−1)  is parametrized in the same way as for an 
RBM. Hence a 2-layer DBN is an RBM, and a stack of 
RBMs share parametrization with a corresponding DBN. 

h
(0)  h (1)  h(t) 

v(0
) 

v(1
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The contrastive divergence update direction can be used to 
initialize each layer of a DBN as an RBM, as follows. 
Consider the first layer of the DBN trained as an RBM P1 
with hidden layer h1 and visible layer v1. We can train a 
second RBM P2 that models (in its visible layer) the 
samples h2 from P1(h1|v1) when v1 is sampled from the 
training data set. It has been shown in [6] that this 
maximizes a lower bound on the log-likelihood of the 
DBN. The number of layers can be increased greedily, with 
the newly added top layer trained as an RBM to model the 
samples produced by chaining the posteriors P(hk|hk−1) of 
the lower layers (starting from h0 from the training data set) 
[6]. 
1) Greedy layer wise training  

It first trains the lower layer with an unsupervised 
learning algorithm (such as one for the RBM), giving rise 
to an initial set of parameter values for the first layer of a 
neural network. Then use the output of the first layer (a 
new representation for the raw input) as input for another 
layer, and similarly initialize that layer with an 
unsupervised learning algorithm. After having thus 
initialized a number of layers, the whole neural network 
can be fine-tuned with respect to a supervised training 
criterion as usual [5]. 
 
2) Advantages  

 First, the greedy layer-by layer learning algorithm 
can find a good set of model parameters fairly quickly, 
even for models that contain many layers of nonlinearities 
and millions of parameters. Second, the learning algorithm 
can make efficient use of very large sets of unlabeled data, 
and so the model can be pre-trained in a completely 
unsupervised fashion. Finally, there is an efficient way of 
performing approximate inference to compute the values of 
the latent variables in the deepest layer, given some input 
[2]. 
3) Disadvantages   

A critical disadvantage of this greedy algorithm is 
that the approximate inference procedure is limited to a 
single bottom-up pass. One consequence of ignoring top-
down influences on the inference process is that the model 
can fail to adequately account for uncertainty when 
interpreting ambiguous sensory inputs. Moreover, the 
existing greedy procedure is clearly suboptimal: it learns 
one layer of features at a time and never re-adjusts its 
lower-level parameters. Although global fine-tuning using 
the contrastive wake-sleep algorithm has been used by 
Hinton, it is very slow and inefficient [2]. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 Graphical Representation of Deep Belief Network 

C. Deep Boltzmann Machine (DBM) 
A Deep Boltzmann Machine is a network of 

symmetrically coupled stochastic binary units. It contains a 
set of visible units v ∈ {0, 1}, and a sequence of layers of 
hidden units h1 ∈ {0, 1}F1 , h2 ∈ {0, 1}F2 ,..., hL ∈ {0, 1}FL. 
There are connections only between hidden units in 
adjacent layers, as well as between the visible units and the 
hidden units in the first hidden layer[3]. 
1) Advantages 

 First, it retains much of the requisites found in 
Deep Belief Networks: it discovers several layers of 
increasingly complex representations of the input, it comes 
with an efficient layer-by-layer pre-training procedure, it 
can be trained on unlabeled data and can be fine-tuned for a 
specific task using the (possibly limited)labeled data. 
Second, the approximate inference procedure for DBM’s 
incorporates a top-down feedback in addition to the usual 
bottom-up pass, allowing Deep Boltzmann Machines to 
better incorporate uncertainty about ambiguous inputs. 
Third, the parameters of all layers can be optimized jointly 
by following the approximate gradient of a variational 
lower-bound on the likelihood function. This greatly 
facilitates learning better generative models. 
2 ) Disadvantages  

The approximate inference, which is based on the 
mean-field approach, is considerably (between 25 and 50 
times) slower compared to a single bottom-up pass as in 
Deep Belief Networks. This makes the joint optimization of 
DBM parameters impractical for large datasets. It also 
reduces the appeal of using DBM’s for extracting useful 
feature representations, since the expensive mean-field 
inference must be performed for every new test input. 
 
 
 
 
 
 
 
 
 
 
                                          
 
 
 
 
 
 

 
 
 
 Fig. 4 Graphical Representation of DBM 
 

IV. DIFFERENT INFERENCES OF THE RBM 
Here we are discussing about the working of two 

inferences: First the conventional inference proposed by 
Hinton in [14] and Second the inference proposed by 
Tanaka and Okutom in [15]. Hinton recommends to use 
probabilities for some purposes and to use the sampled 
binary states for other purposes. But Tanaka considers the 
probabilities of the Bernoulli distribution as expectation of 
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the random variables which means that the calculation with 
the probabilities takes the expectation after applying the 
activation function [15]. 

  
A. Inference of the Conventional Algorithm 

A deep belief network is formed by stacking the trained 
RBMs. First, the RBM is pre-trained with training data by 
the CD training algorithm. Then, the states of the binary 
hidden units of the trained RBM are used as the training 
data of the next layer of the RBM. This process is repeated 
to many layers [15] . 
In the DNN, the output of the (l +1) - th layer’s nodes are 
calculated by 

  ql + 1 = σ(WT
lql + bl)                                    (7) 

  
Where, ql is the output of the l-th layer’s nodes. 
Here the probabilities or the expectation of the random 
binary variables are used as the output of the nodes. 

  ql =  P(ξl = 1) = Ep ξl [ξl]                              (8) 
Where, ξl represents the associated random binary 
variables. 
The probabilities of the (l +1) th node’s state are inferred 
by 

P(ξl +1 = 1) = σ(WT
lEpξl[ξl] + bl)                   (9) 

 
B. New Inference of the RBM 

Here, the inference of the RBM taking expectation after the 
activation function as it is expected to take expectation as 
late as possible. The new inference is expressed by 

P(ξl +1 = 1) = Ep ξl [σ (WT
l [ξl] + bl)         (10) 

The difference between the two inferences are in 
the place of taking the expectation. In the new inference, 
conditional probabilities of the (l+1)th node’s state given 
every possible combination of the binary states of the l-th 
node are evaluated. Then the expectation of those evaluated 
conditional probabilities is evaluated to infer the 
probabilities of the ( l + 1) th node’s state[14]. 
                                                               output 
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Fig. 5  Conventional Inference 
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Fig. 6 New Inference 

 
1) Fast Dropout Training 
In the new algorithm, closed form approximation of 

the fast drop-out training is used [13][14]. A random 
variable Sl+1

j is associated to the input of the activation of 
the j-th node in the l +1-th layer 

 Sl+1
j  = wl

jTξl + bl
j                                        (11) 

 
Where wl

j is the j-th column vector of the matrix Wl 
and bl

j is the j-th element of the vector bl 
 
The density distribution of this random variable is 
approximated by Guassian distribution 
 
Sl+1

j   ˜ N(Sl+1
j  | µ,ρ2)                                          (12) 

 
Where, N(Sl+1

j|µ,ρ2) represents the guassian distribution 
whose mean is µ  and variance is ρ2. 
 

Mean is given by 
 
µ = E [Sl+1

j   ] = E[wl
jTξl + bl

j ] 
   

    = Σ wl
ijp(ξl

i=1) + bl
j                                                            (13) 

  
Variance is given by 
 
ρ2 = V[Sl+1

j   ] = V[wl
jTξl + bl

j] 
 
    = Σ wl

ij2p(ξl
i=1){1 – p (ξl

i=1)}                      (14) 
 
Where V[x] represents the variance of the variable x, wij is 
the (i, j)-th element of the vector (ξl

i is the i-th element of 
the vector ξl[14][15]. 
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V. EXPERIMENTAL VALIDATION 
 Here we have evaluated both the inference with the 
dataset: MNIST. The MNIST handwritten digit dataset consists 
of 28*28 sized black and white images, each containing a digit 0 
to 9 (10 - classes). It includes 60,000 training images and 10,000 
test images. 

I. Conventional Inference 
In this inference we have built five different architectures 

with different number of hidden layers and also different number 
of hidden neurons in same architecture. This comparison is 
demonstrated below in the table: 

 
Table I. Comparison of Conventional Inference 

No. of 
hidden 
layer 

No. of neurons in 
each hidden layer 

Train 
error 

Test 
error 

Misclassfied 

2 800, 800 6.346 12.676 117 
2 1200, 1200 4.896 11.615 111 
3 500,500,2000 6.247 11.513 115 
3 500,1000,2000 6.163 11.705 106 
4 500,500,1000,2000 3.281 14.034 112 

  
II. New Inference 

           We have used the same number of hidden layers and 
hidden neurons in accordance with the conventional 
inference. Here the RMSE and error rate is calculated as in 
[14]. The comparison is shown in the table below: 

 
Table II. Comparison of new Inference 

No. of 
hidden 
layer 

No. of neurons in 
each hidden layer 

Training Data Testing Data 

RMSE 
Error 
rate 

RMSE 
Error 
rate 

2 800, 800 0.0162 0.002 0.0544 0.017 
2 1200, 1200 0.017 0.0022 0.0559 0.0167 
3 500,500,2000 0.022 0.0044 0.0612 0.0201 
3 500,1000,2000 0.0234 0.0041 0.0623 0.0206 

4 500,500,1000,2000 0.0206 0.0034 0.0608 0.0211 

 
VI. CONCLUSION 

In deep learning, we learn to predict and interpret 
complex dependencies between the input (observed) features. In a 
deep algorithm, the input is passed through several non-linearities 
before giving the output. Most modern learning algorithms 
(including decision trees, SVMs and naive bayes) are "shallow". 

In this paper, we have found the conventional inference 
as proposed by Hinton that the misclassification error varies a lot 
with the number of hidden neurons and number of hidden layers. 
But increasing the number of hidden layers to four increases the 
Computational Complexity and it yields unsatisfactory result as 
compared to three hidden layers. But in new inference as 
proposed by Tanaka, increasing in the number of hidden layer 
does yield much effective changes in the result. We need to 
increase the number of hidden layers. Our future will be to 
implement both the algorithm in the biological datasets. 
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