
Deep Learning using Restricted Boltzmann Machines

Neelam Agarwalla1, Debashis Panda2, Prof. Mahendra Kumar Modi3

1,2,3Distributed Information Centre, Department of Agricultural Biotechnology, Assam Agricultural University,
Jorhat-785013, India

3Professor/Head Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat 785013,
Assam, India

Abstract :- Restricted Boltzmann machines (RBM) are
probabilistic graphical models which are represented as
stochastic neural networks. Increase in computational
capacity and development of faster learning algorithms, led
RBMs to become more useful for many machine learning
problems. RBMs are the building blocks of many deep multi-
layer architectures like Deep Belief networks (DBN) and Deep
Boltzmann Machines (DBM). Many machine learning
algorithms like neural networks with a few hidden layers,
Support Vector Machines (SVM), k-Nearest Neighbors (k-
NN), etc., are shallow architectures but DBNs and DBMs are
deep architectures with many hidden layers. In this paper we
have compared two different inference models with four
different architectures. Experimental comparisons
demonstrate that both the inference vary according to the
number of hidden layers and number of neurons in it.

Keywords - RBM, DBN, DBM, SVM, k-NN, DNN

I. INTRODUCTION
Many existing machine learning algorithms

exhibit “shallow” architectures. For example, neural
networks with a few hidden layers, kernel regression, k-
Nearest Neighbors, Support Vector Machines, and many
others have shallow architectures. But some functions
cannot be efficiently represented by architectures that are
too shallow because they are incapable of efficiently
extracting some types of complex structure from rich
sensory input. Moreover, training these systems requires
large amount of labeled data. Thus it would be worthwhile
to explore learning algorithms for deep architectures, which
might be able to represent some functions otherwise not
efficiently representable. One characteristic of deep
architecture is that it can make efficient use of unlabeled
data. But training deep generative models is a difficult task,
because performing inference and evaluating marginal
probabilities under such models is complicated. The
revolution to effective training strategies for deep
architectures came in 2006 with the introduction of
algorithms for training Deep Belief Networks (DBN) [8]
and stacked auto-encoders [7], which are all based on a
similar approach of greedy layer-wise unsupervised pre-
training followed by supervised fine-tuning.

Some of the areas where deep learning
architectures have been successfully applied are
classification tasks [6], regression [9], dimensionality
reduction [7], information retrieval and natural language
processing [10].

In a previous paper [16], the working of restricted
Boltzmann Machine has been briefly explained. Different
techniques have been proposed to improve generalization
ability. A dropout training is a technique to improve the
generalization ability by dropping several hidden nodes
during the training process [12]. But it is computationally
intensive. So, fast algorithm of the dropout training has
been reported[13]. The main component of the DNN
training is a restricted Boltzmann Machine (RBM). It is
initialized by stacking RBM.

II. RESTRICTED BOLTZMANN MACHINE (RBM)
Boltzmann Machines (BM) is the form of log-

linear Markov Random Field (MRF), where the energy
function is linear in its free parameters [4]. We can
introduce hidden nodes to make them powerful enough to
represent complicated distribution. By introducing more
hidden variables, we can increase the modeling capacity of
the Boltzmann Machine. Restricted Boltzmann Machines
are BMs without visible-visible and hidden-hidden
connections [4]; hence the name ‘restricted’. A graphical
representation of an RBM is shown below.

Fig. 1 A graphical representation of an RBM

The Energy function E (v, h) is given by:

 E(v,h)= – b’v – c’h – h’Wv (1)

where W represents the weights connecting hidden and visible
units and b, c are the offsets of the visible and hidden layers
respectively.

In context to free energy, eq (1) is given by:

 F (v) = – b’v – ∑i log ∑hi e hi
(c

i
+W

i
v)

H H H

V V V V

Neelam Agarwalla et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (3) , 2016, 1552-1556

www.ijcsit.com 1552

RBMs are conditionally independent given one another
so they can be written as:
 p (h | v) = ∏ ሻݒ|		݄	ሺ

 p (v | h) = ∏ ห݄ሻ	ݒ	൫

RBMs with binary unit where vj and hi Є {0, 1}
can be obtained by:

 p(hi=1|v)=sigm(ci+Wiv) (2)

 p(vj=1|h) = sigm(bj+W’jh) (3)

Now, the free energy is given by:
 F(v) = – b’v– ∑ilog(1+e(c

i
+W

i
v)) (4)

Combining (1) and (4), we get log-likelihood

gradients of RBM as follows:

െ
డሺ௩ሻ

డௐೕ
	 = Ev[ሺ	݄		|ݒሻ	.	vj]– vj

(i). sigm(Wi . v
(i) +cj)

െ
డሺ௩ሻ

డ
	 = Ev[ሺ	݄		|ݒሻ] – sigm (Wi . v

(i))

െ
డሺ௩ሻ

డ
	= Ev[൫	ݒ		ห݄ሻ]–vj

(i) (5)

Sampling of RBM can be done by running a
Markov chain to convergence, using Gibbs sampling as the
transition operator.

A. Gibbs Sampling

Gibbs sampling of N random variables S = (S1 ,…,
SN) is done through a sequence of N sampling sub-steps of
the form Si ~ p(Si| S-i) where S-I contains the N-1 other
variables in S excluding Si [4].

In RBMs the set of visible and hidden units are
conditionally independent, so we can perform block Gibbs
sampling by simultaneously sampling visible units, given
fixed values of hidden units. Similarly hidden units can
also be sampled, given visible units. One step of Markov
chain is given by:

 h(n+1) = sigm (W’v(n) +c)

 v(n+1) = sigm (W h
(n+1) +b)

where hn is the set of all hidden units at the n-th
step of the Markov chain

Fig. 2 Graphical representation of Gibbs Sampling

The accurate samples of p(v, h) is given by
samples(v(t) , h(t)) when t → ∞

Here updation of each parameter in the learning
process would require running one such chain to
convergence, which is computationally intensive. This is
fundamentally why the Boltzmann machine was replaced in
the late 80’s by the back-propagation algorithm for multi-
layer neural networks as the dominant learning approach.
However, recent works [11], [1], [2] have shown that short
chains can sometimes be used successfully, and this is the
principle of Contrastive Divergence (CD), discussed below
to train RBMs.

B. Contrastive Divergence
CD uses two tricks to speed up the sampling process

[4], [11]:
• CD does not wait for the chain to converge.

Samples are obtained after only k-steps of Gibbs
sampling.

• It initializes the Markov chain with a training
example so that the chain will already be close to
p having converged to its final distribution p.

It has been shown that estimates obtained after running
the chain for just a few steps can be sufficient for model
training [11]. The single-step contrastive divergence
algorithm (CD-1) works like this:
 Positive phase

• An input sample v is clamped to the input layer.
• v is propagated to the hidden layer
• Hidden layer activation result is h

Negative phase
• Propagate h back to the visible layer with result v’
• Propagate the new v’ back to the hidden layer with

activations result h’ Weight update
 w(t +1) = w(t) + a(vhT + v’h’T) (6)

where ‘a’ is the learning rate and v, v’, h, h’, and w are
vectors.

III. MODELS OF DEEP ARCHITECTURE
A. Introduction

Learning algorithms that learn to represent
functions with many levels of composition are said to have
a deep architecture. Deep architectures are composed of
multiple levels of non-linear operations, such as in neural
nets with many hidden layers. RBMs are the building
blocks of deep architectures such as DBN and DBM. Some
of the deep learning models are:
B. Deep Belief Network (DBN)

The first model is the Deep Belief Net (DBN) by
Hinton [1], obtained by training and stacking several layers
of Restricted Boltzmann Machines (RBM) in a greedy
manner. Once this stack of RBMs is trained, it can be used
to initialize a multi-layer neural network for classification
[5].

A DBN is a multi-layer generative model with
layer variables h0 (the input or visible layer), h1, h2, etc. The
top two layers have a joint distribution which is an RBM,
where P(hk|hk−1) is parametrized in the same way as for an
RBM. Hence a 2-layer DBN is an RBM, and a stack of
RBMs share parametrization with a corresponding DBN.

h
(0) h (1) h(t)

v(0
)

v(1
)

v(
2) v(t

)

Gibbs step

……

Neelam Agarwalla et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (3) , 2016, 1552-1556

www.ijcsit.com 1553

The contrastive divergence update direction can be used to
initialize each layer of a DBN as an RBM, as follows.
Consider the first layer of the DBN trained as an RBM P1
with hidden layer h1 and visible layer v1. We can train a
second RBM P2 that models (in its visible layer) the
samples h2 from P1(h1|v1) when v1 is sampled from the
training data set. It has been shown in [6] that this
maximizes a lower bound on the log-likelihood of the
DBN. The number of layers can be increased greedily, with
the newly added top layer trained as an RBM to model the
samples produced by chaining the posteriors P(hk|hk−1) of
the lower layers (starting from h0 from the training data set)
[6].
1) Greedy layer wise training

It first trains the lower layer with an unsupervised
learning algorithm (such as one for the RBM), giving rise
to an initial set of parameter values for the first layer of a
neural network. Then use the output of the first layer (a
new representation for the raw input) as input for another
layer, and similarly initialize that layer with an
unsupervised learning algorithm. After having thus
initialized a number of layers, the whole neural network
can be fine-tuned with respect to a supervised training
criterion as usual [5].

2) Advantages

 First, the greedy layer-by layer learning algorithm
can find a good set of model parameters fairly quickly,
even for models that contain many layers of nonlinearities
and millions of parameters. Second, the learning algorithm
can make efficient use of very large sets of unlabeled data,
and so the model can be pre-trained in a completely
unsupervised fashion. Finally, there is an efficient way of
performing approximate inference to compute the values of
the latent variables in the deepest layer, given some input
[2].
3) Disadvantages

A critical disadvantage of this greedy algorithm is
that the approximate inference procedure is limited to a
single bottom-up pass. One consequence of ignoring top-
down influences on the inference process is that the model
can fail to adequately account for uncertainty when
interpreting ambiguous sensory inputs. Moreover, the
existing greedy procedure is clearly suboptimal: it learns
one layer of features at a time and never re-adjusts its
lower-level parameters. Although global fine-tuning using
the contrastive wake-sleep algorithm has been used by
Hinton, it is very slow and inefficient [2].

Fig. 3 Graphical Representation of Deep Belief Network

C. Deep Boltzmann Machine (DBM)
A Deep Boltzmann Machine is a network of

symmetrically coupled stochastic binary units. It contains a
set of visible units v ∈ {0, 1}, and a sequence of layers of
hidden units h1 ∈ {0, 1}F1 , h2 ∈ {0, 1}F2 ,..., hL ∈ {0, 1}FL.
There are connections only between hidden units in
adjacent layers, as well as between the visible units and the
hidden units in the first hidden layer[3].
1) Advantages

 First, it retains much of the requisites found in
Deep Belief Networks: it discovers several layers of
increasingly complex representations of the input, it comes
with an efficient layer-by-layer pre-training procedure, it
can be trained on unlabeled data and can be fine-tuned for a
specific task using the (possibly limited)labeled data.
Second, the approximate inference procedure for DBM’s
incorporates a top-down feedback in addition to the usual
bottom-up pass, allowing Deep Boltzmann Machines to
better incorporate uncertainty about ambiguous inputs.
Third, the parameters of all layers can be optimized jointly
by following the approximate gradient of a variational
lower-bound on the likelihood function. This greatly
facilitates learning better generative models.
2) Disadvantages

The approximate inference, which is based on the
mean-field approach, is considerably (between 25 and 50
times) slower compared to a single bottom-up pass as in
Deep Belief Networks. This makes the joint optimization of
DBM parameters impractical for large datasets. It also
reduces the appeal of using DBM’s for extracting useful
feature representations, since the expensive mean-field
inference must be performed for every new test input.

 Fig. 4 Graphical Representation of DBM

IV. DIFFERENT INFERENCES OF THE RBM
Here we are discussing about the working of two

inferences: First the conventional inference proposed by
Hinton in [14] and Second the inference proposed by
Tanaka and Okutom in [15]. Hinton recommends to use
probabilities for some purposes and to use the sampled
binary states for other purposes. But Tanaka considers the
probabilities of the Bernoulli distribution as expectation of

Neelam Agarwalla et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (3) , 2016, 1552-1556

www.ijcsit.com 1554

the random variables which means that the calculation with
the probabilities takes the expectation after applying the
activation function [15].

A. Inference of the Conventional Algorithm

A deep belief network is formed by stacking the trained
RBMs. First, the RBM is pre-trained with training data by
the CD training algorithm. Then, the states of the binary
hidden units of the trained RBM are used as the training
data of the next layer of the RBM. This process is repeated
to many layers [15] .
In the DNN, the output of the (l +1) - th layer’s nodes are
calculated by

 ql + 1 = σ(WT
lql + bl) (7)

Where, ql is the output of the l-th layer’s nodes.
Here the probabilities or the expectation of the random
binary variables are used as the output of the nodes.

 ql = P(ξl = 1) = Ep ξl [ξl] (8)
Where, ξl represents the associated random binary
variables.
The probabilities of the (l +1) th node’s state are inferred
by

P(ξl +1 = 1) = σ(WT
lEpξl[ξl] + bl) (9)

B. New Inference of the RBM

Here, the inference of the RBM taking expectation after the
activation function as it is expected to take expectation as
late as possible. The new inference is expressed by

P(ξl +1 = 1) = Ep ξl [σ (WT
l [ξl] + bl) (10)

The difference between the two inferences are in
the place of taking the expectation. In the new inference,
conditional probabilities of the (l+1)th node’s state given
every possible combination of the binary states of the l-th
node are evaluated. Then the expectation of those evaluated
conditional probabilities is evaluated to infer the
probabilities of the (l + 1) th node’s state[14].
 output

 Input random Binary states

Fig. 5 Conventional Inference

 output

 Input random Binary states

Fig. 6 New Inference

1) Fast Dropout Training
In the new algorithm, closed form approximation of

the fast drop-out training is used [13][14]. A random
variable Sl+1

j is associated to the input of the activation of
the j-th node in the l +1-th layer

 Sl+1
j = wl

jTξl + bl
j (11)

Where wl

j is the j-th column vector of the matrix Wl
and bl

j is the j-th element of the vector bl

The density distribution of this random variable is
approximated by Guassian distribution

Sl+1

j ˜ N(Sl+1
j | µ,ρ2) (12)

Where, N(Sl+1

j|µ,ρ2) represents the guassian distribution
whose mean is µ and variance is ρ2.

Mean is given by

µ = E [Sl+1

j] = E[wl
jTξl + bl

j]

 = Σ wl
ijp(ξl

i=1) + bl
j (13)

Variance is given by

ρ2 = V[Sl+1

j] = V[wl
jTξl + bl

j]

 = Σ wl

ij2p(ξl
i=1){1 – p (ξl

i=1)} (14)

Where V[x] represents the variance of the variable x, wij is
the (i, j)-th element of the vector (ξl

i is the i-th element of
the vector ξl[14][15].

Mean : σ2

Mean : σ2

σ

Σ

E E E

ΣwjiE[ξl]

{0,1} {0,1} {0,1}

Mean : σ2

Variance:ρ2
2

Mean : σ2

Variance:ρ2
1

E

σ

N

Σ

{0,1} {0,1} {0,1}

Σiw
ji[ξl]

Neelam Agarwalla et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (3) , 2016, 1552-1556

www.ijcsit.com 1555

V. EXPERIMENTAL VALIDATION
 Here we have evaluated both the inference with the
dataset: MNIST. The MNIST handwritten digit dataset consists
of 28*28 sized black and white images, each containing a digit 0
to 9 (10 - classes). It includes 60,000 training images and 10,000
test images.

I. Conventional Inference
In this inference we have built five different architectures

with different number of hidden layers and also different number
of hidden neurons in same architecture. This comparison is
demonstrated below in the table:

Table I. Comparison of Conventional Inference

No. of
hidden
layer

No. of neurons in
each hidden layer

Train
error

Test
error

Misclassfied

2 800, 800 6.346 12.676 117
2 1200, 1200 4.896 11.615 111
3 500,500,2000 6.247 11.513 115
3 500,1000,2000 6.163 11.705 106
4 500,500,1000,2000 3.281 14.034 112

II. New Inference

 We have used the same number of hidden layers and
hidden neurons in accordance with the conventional
inference. Here the RMSE and error rate is calculated as in
[14]. The comparison is shown in the table below:

Table II. Comparison of new Inference

No. of
hidden
layer

No. of neurons in
each hidden layer

Training Data Testing Data

RMSE
Error
rate

RMSE
Error
rate

2 800, 800 0.0162 0.002 0.0544 0.017
2 1200, 1200 0.017 0.0022 0.0559 0.0167
3 500,500,2000 0.022 0.0044 0.0612 0.0201
3 500,1000,2000 0.0234 0.0041 0.0623 0.0206

4 500,500,1000,2000 0.0206 0.0034 0.0608 0.0211

VI. CONCLUSION

In deep learning, we learn to predict and interpret
complex dependencies between the input (observed) features. In a
deep algorithm, the input is passed through several non-linearities
before giving the output. Most modern learning algorithms
(including decision trees, SVMs and naive bayes) are "shallow".

In this paper, we have found the conventional inference
as proposed by Hinton that the misclassification error varies a lot
with the number of hidden neurons and number of hidden layers.
But increasing the number of hidden layers to four increases the
Computational Complexity and it yields unsatisfactory result as
compared to three hidden layers. But in new inference as
proposed by Tanaka, increasing in the number of hidden layer
does yield much effective changes in the result. We need to
increase the number of hidden layers. Our future will be to
implement both the algorithm in the biological datasets.

ACKNOWLEDGMENT
Authors 1 & 2 were financially supported by Biotechnology
Information System Network (BTISNET), Department of
Biotechnology, Government of India.

REFERENCES
[1] Yoshua Bengio, “Learning deep architecture for AI”, Foundation

and trends in Machine Learning,Volume 2 Issue 1,pages 1-127,
January 2009.

[2] Ruslan Salakhutdinov, Hugo Larochelle , “Efficient Learning of
Deep Boltzmann Machines ”,Neural computation, ,Volume 24,No.8,
Pages 1967-2006, August 2012.

[3] Geoffrey Hinton, Ruslan Salakhutdinov, “Deep Boltzmann
machine”, In 12th International Conference on Artificial Intelligence
and Statistics (AISTATS), Volume 5 of JMLR, Florida, USA,
2009.

[4] Asja Fischer and Christian Igel, “ An Introduction to Restricted
BoltzmanMachine”, Progress in Pattern Recognition , Image
analysis, Computer Vision and Applications, Volume 7441,pp 14-36,
ISBN : 978-3-642-33274-6 ,2012

[5] D. Erhan, Y. Bengio, A. Courville, P.-A. Manzagol, P. Vincent,
and S. Bengio, “Why does unsupervised pre-training help deep
learning? ”, Journal of Machine Learning Research, JMLR, 11:625-
660, 2010.

[6] Bengio, Y., & LeCun, Y., “Scaling learning algorithms towards AI”,
In Bottou, L., Chapelle, O., DeCoste, D., & Weston, J. (Eds.), Large
Scale Kernel Machines. MIT Press, 2007.

[7] Salakhutdinov, R., & Hinton, G. E. (2007a), “Learning a nonlinear
embedding by preserving class neighbourhood structure”, In
Proceedings of the Eleventh International Conference on Artificial
Intelligence and Statistics (AISTATS’07) San Juan, Porto Rico.
Omnipress, 2007.

[8] Hinton, G. E., “To recognize shapes, first learn to generate images”,
Tech. rep. UTML TR 2006-003, University of Toronto, 2006.

[9] Salakhutdinov, R., & Hinton, G. E., “Using deep belief nets to learn
covariance kernels for Gaussian processes”, In Platt, J., Koller, D.,
Singer, Y., & Roweis, S. (Eds.), Advances in Neural Information
Processing Systems 20 (NIPS’07), pp. 1249–1256 Cambridge,MA.
MIT Press, 2008.

[10] Mnih, A., & Hinton, G. E., “A scalable hierarchical distributed
language model”, In Koller, D.,Schuurmans, D., Bengio, Y., &
Bottou, L. (Eds.), Advances in Neural Information Processing
System 21 (NIPS’08), pp. 1081–1088., 2009.

[11] G. E. Hinton, “Training products of experts by minimizing
contrastive divergence”, Neural Computation, 14(8):1771 - 1800,
Aug. 2002.

[12] L. Wan, M. Zeiler, S. Zhang, Y. L. Cun, and R. Fergus,
“Regularization of neural networks using dropconnect,” in
International Conference on Machine Learning (ICML), 2013, pp.
1058–1066.

[13] S. Wang and C. Manning, “Fast dropout training,” in International
Conference on Machine Learning (ICML), 2013, pp. 118–126.

[14] G. Hinton, “A practical guide to training restricted boltzmann
machines,”UTML TR 2010-003, 2010.

[15] M. Tanaka and M. Okutomi, “A Novel Inference of a Restricted
Boltzmann Machine,” Proceedings of the 2014 22nd International
Conference on Pattern Recognition (ICPR) 2014, pp. 1526-1531.

[16] Adarsh Pradhan and Neelam Agarwalla,”Deep Learning using
Resticted Boltzmann Machine,” in International Journal of
Advanced Computer and Engineering, Volume4, Issue3 2015,pp10-
14

Neelam Agarwalla et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (3) , 2016, 1552-1556

www.ijcsit.com 1556

